Physics

Name Symbol Value

Number $\pi = 3.141$

Number e = 2.718

Elementary Charge e = 1.602

Gravitational Constant G = 6.672

Fine Structure Constant $\alpha = e^2 / 2hc\varepsilon_0$

Speed of ligth in vaccum C = 2.997 def

Permittivity of the vaccum $\varepsilon_0 = 8.854$

Planck's Constant h = 6.626

Bohr Megneton $\pi B = eh/2me = 9.2741$

Bohr Radius a = 0.5291

Rydberg's Constant Ry = 13.595 eV

Electron Compton Wavelength $\lambda_{ce} = h/mec = 2.2463$

Proton Campton wavelength $\lambda_{ce} = h/mpc = 1.3214$

Ectrostatics

Ocloumbs law

1.
$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 Q_2}{R^2}$$

- 2. Torque = $P E \sin \theta$
- 3. Workdone = PE $(1 \cos \theta)$

P = Dipole moment

E = electric field

- 4. flux $\phi = \iint \vec{E} \cdot ds$
- 5. Electric field around a point charge

$$E = \frac{KO}{R^2}$$

6. Capacitor Q = CV

C = capacitance

V = Voltage

7. Capacitor combination

Parallel $C_{eq} = C_1 + C_2 + C_3 + \dots$

Series
$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$$

8. common potential $V = \frac{C_1 V_1 + C_2 V_2}{C_1 + C_2}$

- 9 Loss in energy $U = \frac{C_1 C_2}{2(C_1 + C_2)} \cdot (V_1 V_2)^2$
- 10. Potential Energy of a conductor $U = \frac{1}{2}QV$

Current Electricity

1. Kirchhoff's law:

Loop rule $\sum A$ roundary loop $\Delta v_1 = 0$

Node rule \sum At an y node $l_1 = 0$

2. Resistor Combination:

Series = $R_{es} = R_1 + R_2 + R_3 + \dots$

Parallel =
$$\frac{1}{R_{es}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

3. Electric power

 $P = I^2 R$

4. Ohms law

V = IR

V = Voltage

I = Current

R = resistance

5. Current

$$I = \frac{Q}{T}$$

- 6. Work = F.D.Cos θ
- 7. Current density $j = \frac{T}{A}$
- 8. Resistance of conductor $R = \frac{V}{I} = \frac{\text{Potential difference between two conductor}}{\text{Current flowing in conductor}}$
- 9. Ratio of emf of two cells

$$\frac{E_1}{E_2} = \frac{L_1}{L_2}$$

Magnetic effect of current and magnetism

Coulomb's inverse square law.

$$F = (\mu_0 / 4\pi) * (m_1 m_2) / r^2 = \frac{\mu_0}{4\pi} \times \frac{M_1 M_2}{r^2}$$

1. Intesity of magnetic field.

 $B = m/r^2$ m = magnetic pole strength's = radius

2. Magnetic moment due to revolving electron M = evr/2

3. Bio-savert law
$$dB = \frac{\mu_0}{4\pi} \times \frac{Idl \sin \theta}{r^2}$$

4. Intensity magnetic field

(a) due long straight current wire = B =
$$\frac{\mu_0}{4\pi} \times \frac{2!}{r}$$

(b) due to circular coil = B =
$$\left(\frac{\mu_0}{4\pi}\right) \times \frac{2\pi r!}{r}$$

5. Lorentz transformation factor

$$\mathbf{B} = \sqrt{1 - V^2 C^2}$$

6. Lorentz force

$$F = qvB\sin\theta$$

7. Force between parallel current carrying conductor:

$$F = \frac{\mu}{4\pi} \cdot \frac{l_1 l_2}{r}$$

8. Glavanometere shunt

$$I_G = \frac{S}{S + G}$$

Electromagnetic Induction and alternating current

1. Magnetic fulx $\phi = AB \cos \theta$

 $\vec{B}.\vec{A}$ in vector form

2. Enduced e.m.f.
$$E = \frac{Nd\phi}{dt}$$
 $N = \text{turn's}$

3. Magnetic flux of coil when current is passing through them ϕ =LI I = Current

4. Transformer ratio
$$r = \frac{n_s}{n_p} = \frac{e_s}{e_p}$$

5. Resonant frequency = $1/2\pi\sqrt{LC}$

6. R.C. Circuit

Power factor :-

$$\cos\phi = \frac{R}{\sqrt{R^2 + \frac{1}{W^2 C^2}}}$$

Impedance =
$$= \sqrt{R^2 + \frac{1}{W^2 C^2}}$$

7. LCR Circuit :-

Power factor
$$\cos \phi = \frac{R}{\sqrt{R^2 + \left[WL - \left(1/WC\right)^2\right]}}$$

Impedance I =
$$\sqrt{R^2 + \left[WL - \left(\frac{1}{WC}\right)\right]^2}$$

8. LC Circuit

Impedance =
$$x_I - x_c$$

Magnetic field around a wire

$$B = \frac{\pi L}{2\pi r}$$

9. Force caused by a magnetic field on a moving change

$$F = q.v.\sin\theta$$

Electromagnetic Waves and wave optics

1. Young's experiment

Bright fringe =
$$y_n = (D/2d)*n\lambda$$

Distance un

$$Y^{n} = (D/2d)*{2n-1/2.}\lambda$$

2. Fringe shift =
$$D/2d.(\mu-1)t$$

$$F = 1/2\pi\sqrt{LC}$$

4. Vacuum tube speed of electromagnetic waves

$$C = 1/\sqrt{\mu\varepsilon} = 3*10^8 \text{MS}^{-1}$$

5. Distance up to which Tv transmission

$$D = \sqrt{2hR}$$
 R = Radius of earth

Ray Optics

1. Focal length of spherical mirror

$$F = \frac{1}{2} R$$
 (R = Radius of curvature)

2. In spherical mirror U, v and f releated as

U, v and f releated as
$$1/u + 1/v = 1/f$$

- 3. Anlge of deviation = $100^{\circ} 2i$ I = angle of incidence
- 4. Refractive index =

$$\frac{\sin i}{\sin r} = \mu_2 \text{ (constant)}$$

5. For a refraction of a spherical surface $\frac{\mu}{v} - \frac{1}{\mu} = \frac{u-1}{R}$

First focal length
$$F_1 = -\left[\frac{R_1}{\mu - 1}\right]$$

Second focal length
$$F_2 = -\left[\frac{\mu R}{\mu - 1}\right]$$

6. Refraction through thin lense

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

7. Refraction index g material of a prism

$$\mu = \frac{\sin\left[\frac{(A+S_m)}{2}\right]}{\sin\frac{A}{2}}$$

8. Dispersive power of material of prism

$$\omega = \frac{\left(sv - sR\right)}{sv}$$

9. Lense equation :-

10.
$$\frac{1}{f} = \frac{1}{D_0} + \frac{1}{Di} - \frac{1}{O} + \frac{1}{l}$$

$$F = Focal length$$

$$l = image distance$$

$$O = object distance$$

$$M = -\frac{D_1}{D_0} = -\frac{i}{O} = \frac{H_1}{H_0}$$

Optical Instrument

- 1. Magnifying power of microscope = visual angle at the eye by the imae formed by microscope visual angle at the eye by the object by it is at least distance of distinct vision = D/f.
- 2. Magnifying power of compound microscope $M = -\left(\frac{v_0}{\mu_0}\right)\left(1 + \frac{D}{f_e}\right)$

 $V_0 + u_e =$ length of microscope tube

3. Magnifyin power of collinear telescope

$$M = \left(\frac{f_0}{f_e}\right) \left(1 - \frac{f_e}{D}\right)$$

- 4. Resolving unit = 1/Resolving limit
- 5. Resolving limit * min = $\frac{1.22}{2} \mu \sin \phi$

Electron and photon

Milliken's experiment

charge on drop

$$Q = 9\pi r^{3/2} \left[2/g \left(p - \sigma \right) \right]^{1/2} \left[v_1^{1/2} / \in \left(v_1 + v_2 \right) \right]$$

1. Momentum of each photon

$$= hv/c$$
 $h = 6.6 * 10^{-34}$

- 2. Energy of photon $hv = hc/\lambda$
- 3. The maximum kinetic energy of photo electron is $E_k = \frac{1}{2}MV^2$

M = Mass of electron

V = velocity of electron

4. The kinetic energy of electron accelerated by a potential difference of v volt $V = \sqrt{2ev/m}$

Solid state and semi conductor devices

Current in semi conductor

$$I = I_e + I_n$$

$$= A_e \left[n_e v_e + n_v v_n \right]$$

1. Conductivity of SEM: conductor

$$\sigma = e(n_e u_e + n_v v_n)$$

Resistivity =
$$\frac{1}{e} (n_e u_e + n_n u_n)$$

- 2. Frequency of oscillator $F = \frac{1}{2}\pi\sqrt{LC}$
- 3. In a transistor the emitter current I_e base current I_b and collector current I_e then

$$I_E = I_B + I_C$$

4. A and B are related

$$B = \frac{\alpha}{1 - \alpha} \qquad \alpha = \frac{\beta}{\beta + 1}$$

Unit - 10

Principle of communication

Modulation index $= \in_{man} - \in_{min} / \in_{man} + \in_{min}$

1. Frequency modulated wave

$$(e_c) f_m = \in_c \cos \left[w_c + (\Delta f / m) \sin \omega_m t \right] t$$

2. Frequency deviation: - Type equation here.

$$\Delta F = f_{\text{max}} - f_c$$

$$\Delta F = f_c - f_{\min}$$

- 3. For the core cladding boundary surface, critical angle $i_c = \sin^{-1}(\mu_2 / \mu_1)$
- 4. The angle of incidence $i_a = \sin^{-1} \sqrt{\mu_1^2 \mu_2^2}$

